
Interactive Analog/Digital mixed signal modeling via Foreign

VHDL/Verilog C interface

Alessio Brighina, Francesco Giuffrè

STMicroelectronics, Stradale Primosole, 50

95121 Catania Italy

ABSTRACT

 The development of modern electronic modules

requires even more appropriate tools to facilitate their early

prototyping. Mixed Analog/Digital systems today need

simulation platforms based on co-simulation between different

analog and digital simulations tools, falling in a higher cost and

slower computation times, due to the need of a continuous data

transfer among them.

In this article an analog-digital mixed signal modeling approach

based on the conversion of analog Matlab/Simulink® model to

C code is presented, along with a real case study.

Goal of this approach is to create an interactive simulator,

operating-system independent, able to run time-effective Mixed

A/D Signal simulations.

The integration of the C code (for analog modules) with the

VHDL/Verilog code (for the digital cores) eliminates the need

of co-simulation, thus reducing model complexity, cost and

improving the code portability.

In the present work the model of a complete Light Emitting

Diodes (LED) driver module is reproduced. Its analog parts

were originally modelled in Matlab/Simulink while the Digital

core was represented by mean of its related VHDL code. The

model of an external Serial Peripheral Interface (SPI) module

was also implemented in order to send digital command to the

driver and so to simulate the control performed by a virtual

Microcontroller.

All this has been achieved realizing an ‘interactive’ user-friendly

web Graphic User Interface (GUI), thus enabling to change

several system parameters and to modify the devices setting

while a simulation is running. Definitively, the tool works just

like a ‘live datasheet’ allowing to analyze the device model in

dynamic conditions, along with variation of inputs and digital

command sent by the virtual Microcontroller. It can be

massively used for customers support, marketing activities, load

compatibility definition and design support.

In the specific case, the final generated Digital Code was built

for Modelsim® and then successfully tested with NCSim®, in

order to prove the independence of the approach from the digital

simulator.

Keywords: Matlab, Simulink, Modelsim, NCSim, Simulink

coder, VHDL (Very High Speed Integrated Circuits Hardware

Description Language), Verilog, Co-simulation, Interactive

Modeling, Code Conversion, Foreign Language Interface (FLI),

Verilog Programming Language Interface (PLI).

1. INTRODUCTION

Mixed mode A/D models can be simulated in Matlab or

Simulink environments with the support of the EDA Simulator

Link® that provides a co-simulation interface with commercial

HDL simulators from Mentor Graphics®, Cadence®, and

Synopsys®. Matlab code or Simulink models can also be used

as a test bench for the generation of stimulus for HDL modules

provided by designers and for analyzing the simulation's results.

Communication interface may be bidirectional and

Matlab/Simulink-HDL modules can be connected in closed

loop.

In this way, any mixed A/D model can be virtually simulated,

developing models of analog parts and interfacing them with the

HDL modules for the digital parts (Fig. 1).

Fig. 1 – Analog and Digital Subsystems

The advantage of this solution is a high flexibility in the

projecting phase. On the other side, full simulation environment,

consisting on Matlab/Simulink + Toolbox (at least EDA

Simulator Link) and a compatible HDL simulator, must be

available for third party users. One way to drastically reduce

cost and complexity for using the above tools is to compile

analog Simulink parts and integrate them in HDL simulator.

For a given A/D system, the proposed modeling workflow is the

following:

✓ Build the behavioral Simulink models of each analog

model (granularity is up to the purposes)

✓ Integrate in the Simulink environment the Digital part

(Native VHDL/Verilog) by means of EDA Simulator Link

(Co-simulation Simulink/HDL Simulator).

✓ Generate standalone C code via Simulink coder for the

analog subsystem only.

✓ Modify generated code to integrate it with VHDL or

Verilog foreign C interface (so obtaining a separate library)

✓ Write HDL wrappers for the C analog generated library and

top module.

✓ The final model requires only a HDL simulator to run (e.g.

Modelsim or NCSim).

clk

In1

In2

Out1

Out2

Out3
 SharedMem

HDL Cosimulation

ClockIn1

In2

In3

Out1

Out2

Analog

Subsystem

2. FOREIGN VHDL/VERILOG C INTERFACES

Modern HDL simulators can integrate foreign language codes

(e.g. C/C++) for behavioral modules descriptions via external

interfaces. Moreover it is possible to implement C subroutines

inside VHDL architectures and integrate them with Verilog

modules or vice versa.

VHDL C interface is commonly referred as Foreign Language

Interface (FLI) or VHDL Procedural interface (VHPI); FLI and

VHPI implementations depend by HDL simulators and are

usually described in their own reference manuals. On the

contrary, Verilog Programming Language Interface (PLI) is a

standard procedural interface and is described by IEEE 1364-

2005 Language Reference Manual and many third part ones.

2.1 FROM SIMULINK TO C CODE CONVERSION
Simulink Coder™ (formerly Real-Time Workshop®) is an

application of Mathworks® which generates and executes C and

C++ code from Simulink diagrams, Stateflow® charts, and

MATLAB functions.

It automatically builds modules that execute in Real-Time or

Stand-alone non-real-time simulation for most Simulink blocks

and many MathWorks products (Fig. 2).

The generated source code matches the functionality behavior of

original MATLAB/Simulink one with high degree of fidelity.

Fig. 2 – Working Flow

Selecting ‘Generic Real-Time target’ (grt) option in ‘Code

Generation’ pane, once the code generation is complete, several

C/C++ files are generated in the ‘X_grt_rtw’ directory (where

‘X’ is the model name). Number and size of generated files

depend on the model complexity.

‘X.c’ is the stand alone C code that implements the model.

Other files from Matlab installation path are also used for code

generation and execution.

In particular, the file ‘grt_main.c’ contains the main C routine

used to initialize all the variables, to allocate memory, invoke

the functional routine that implements the model and terminate

the program.

In order to simplify the above procedure, selecting ‘Create

Visual C/C++ Solution File for the grt target’ a project file

referring all required C/C++ files and settings is generated and

ready to be imported in Visual Studio.

2.2 MODELSIM FOREIGN LANGUAGE

INTERFACE

In order to interface the generated code with VHDL, Visual

Studio project and ‘grt_main.c’ file need to be modified,

according to Modelsim FLI specifications.

Before starting to create a FLI application, the following

additional concepts have to be better cleared.

A foreign VHDL architecture is a design unit that is instantiated

in a design but that does not (generally) contain any VHDL

code. More likely it is a link to a C model that can communicate

with the rest of the design through the ports of the foreign

architecture.

FLI routines are C functions providing procedural access to

information within Model Technology’s HDL simulator, like

Modelsim. A user-written application can use these functions to

traverse the hierarchy of an HDL design, get information about

and set the values of VHDL objects in the design, get

information about a simulation and control a simulation run. The

header file, ‘mti.h’ implements all functions and types that can

be used by FLI applications and must be included in the

modified ‘grt_main.c’.

When the simulator starts, it first goes through an elaboration

phase during which the entire design is loaded, connected and

initial values are set. During this phase, all foreign shared

libraries are loaded and the initialization functions of all foreign

architectures are executed.

The simulation phase begins when the first run command is

executed and continues until a quit or restart command is

executed. When a restart command is executed, the simulator

goes through its elaboration phase again.

To use the foreign language interface with C models, VHDL

architecture must be first created and compiled with the suited

FOREIGN attribute containing the name of the initialization

function (‘app_init’) and the path of the shared object file to be

loaded (‘app.so’).

The 1st step from the C side for modelsim FLI is to modify

configuration parameters in Visual Studio project, according to

the following steps:

✓ Change configuration type to ‘Dynamic library (.dll)’

✓ In C/C++\general pane, add ‘<msim_dir>\include’ to

‘Additional include directories’.

✓ In linker\general pane, set output file to ‘app.so’

✓ In linker\Input pane, add ‘<msim_dir>\win32\mtipli.lib’ to

‘Additional dependencies’.

✓ In linker\command line pane, add: ‘-export: app_init’ to

‘Additional options’.

The next step is to modify the main function in ‘grt_main.c’,

according to the declaration of an initialization FLI function.

The drawback of this solution is that it uses functions of a

specific proprietary (Mentor, Cadence, Synopsys…) and then it

is suitable only for that proprietary. In order to simulate the

same system with another digital simulator, it is required to

write a different FLI or VHPI, based on simulator reference (due

to a lack of FLI/VHPI standardization). In the following, an

alternative solution based on verilog PLI, that is suitable for

almost every digital simulator.

Simulink

coder

C or C++

code

Compiler

IDE project

Executable

program

Simulink

Matlab code Embedded Matlab

Function or S-Function

Other Simulink or

Stateflow blocks

2.3 VERILOG PROGRAMMING LANGUAGE

INTERFACE

The Verilog language is extensible via programming language

interface (PLI) and Verilog procedural interface (VPI) routines.

The IEEE 1364-2005 Standard for Verilog Hardware

Description Language defines PLI/VPI routines for interfacing

external programs to verilog simulators. Through this interface,

a Verilog simulator can be customized to perform virtually any

engineering task desired. Just a few of the common uses of the

PLI includes interfacing Verilog simulations to C language

models.

Although some Verilog simulators may not strictly adhere to

this standard, and sometimes ambiguities in the complex IEEE

standard are interpreted differently, the examples presented

within this article will work with any Verilog simulator that is

fully IEEE compliant.

A PLI application is a user-defined C language application

which can be executed by a Verilog simulator. The PLI

application can interact with the simulation by both reading and

modifying the simulation logic and delay values.

The general steps to create a PLI application are:

✓ Define a system task or system function name for the

application.

✓ Write a C language ‘calltf’ routine which will be executed

by the simulator whenever simulation encounters the

system task name or the system function name.

✓ Register the system task or system function name and the

associated C language routines with the Verilog simulator.

✓ Compile the C source files which contain the PLI

application routines, and link the object files into the

Verilog simulator.

In the Verilog language, a system task or a system function is a

command which is executed by a Verilog simulator. The name

of a system task or a system function begins with a dollar sign.

The first step in creating a PLI application is to create a new

system task or system function name in a Verilog wrapper.

In this way, every clock tick, the external function ‘app_vpi’ is

executed; similar to VHPI, it reads inputs from digital simulator,

executes one step simulation and put back outputs to simulator.

The 1st step from the C side for PLI is to modify configuration

parameters in Visual Studio project, according to the following

steps:

✓ Change configuration type to ‘Dynamic library (.dll)’

✓ In linker\general pane, set output file to ‘app_vpi.sl’

✓ In linker\command line pane, add:

‘-export:vlog_startup_routines’ to ‘Additional options’.

The second step is to write a C language ‘calltf’ routine that will

be called when the Verilog simulator executes the ‘$app_vpi’

system task.

The third step in creating a new PLI application is to notify the

Verilog simulator about the new system task or system function

name and the C routines which are associated with the

application (‘register’ routine).

Optionally a ‘compiletf’ routine can be defined to verify that the

system task or system function is being used correctly and has

the correct types of arguments.

Finally, the ‘app_interface’ routine (defined in ‘calltf’) reads the

inputs, calls the C model ‘rt_onestep’ included in ‘grt_main.c’

and writes outputs to Verilog signals.

3. TEST CASE

The above presented procedure has been adopted for developing

a simulation environment including STMicroelectronics

Intelligent Power and Smart Power models devices for

automotive applications. In the specific test case, the application

schematic of a LEDs driver L99LD01 has been reproduced,

including the external circuitry (Fig. 3).

as load.

Fig. 3 – LED (L99LD01) Application Schematic

Initially, the entire simulation schematic was developed in

Matlab/Simulink (+SimPowerSystems®+ EDA Simulator Link).

The digital core was co-simulated by Modelsim.

In a further step, the related C Code has been generated by

means of Simulink Coder and compiled. At the same time, a

suitable PLI interface has been realized.

Fig. 4 – LED (L99LD01) User Interface

PLI interface, initially designed for Modelsim environment was

successfully tested with NCSim in Linux/Sun environment.

Compared to VHPI, PLI revealed to be faster and less memory

demanding; furthermore it is suitable for almost every digital

simulator able to run mixed VHDL/Verilog simulations.

4. REAL TIME INTERACTIVE WEB GUI

Thanks to the PLI interface, final version of the simulator can be

compiled in both Modelsim and NCSim environments.

To facilitate the usage of such simulator, a web GUI was

developed, so allowing, independently from the adopted

operating system, to use a digital simulator running on a server

and to modify simulation parameter values in real time. At the

end, the tool acts just like a ‘live datasheet’. Java language was

used for the web GUI, this due to the possibility to use many

functions for telnet, ssh or ftp. The only prerequisite for the end

user is to eventually install the java run time environment, which

is freely available for the most common operating systems.

Fig. 5 – LED (L99LD01) Register Page

When the simulation starts, the web GUI connects to the server

via ssh, checks for licenses and starts Modelsim or NCSim

digital tool. Parameters are passed to the simulator by means of

a text file via ftp. Every plotting step (e.g.20s) simulator

checks for parameters and plots values. The Registers Page of

the user interface allows the user to act as a micro, giving the

possibility to send and receive SPI commands, force some faults

and see results in real time, in an explicit view (by means of

colored flag) or in a more detailed view where every single

register bit is showed (Fig. 4 and Fig. 5).

Fig. 6 – LED (L99LD01) Plot Panel

For example, a Vcc1 under voltage fault is forced and a change

in the LED Current set point value applied (Fig. 6).

As consequence of the former action, some flags related to Vcc1

became red, thus indicating a warning or an error involving this

parameter and the Global Error Flag (GEF) as well. The latter

action leads to a SPI frame sending for every variation of the set

point of the current flowing through the LEDs chain. In the

picture both the current set point (in blue) and how the device is

behaving (in red) are visible.

In another window (SPI Interface) all the SPI frames are

recorded and a batch sequence of SPI frames can be

programmed to be sent at specific time (Fig. 7).

Fig. 7 – LED (L99LD01) SPI Interface

5. CONCLUSIONS

A/D Mixed mode simulation was done for commercial

STMicroelectronics L99LD01 High Efficiency Constant Current

LED Driver, converting Simulink analog parts to C and

interfacing them to digital simulator via VHDL/Verilog foreign

C architecture. With this unique mixed-signal simulation

environment, based only on Modelsim or NCSim digital tools,

users are able to simulate A/D mixed models.

A solution for complete standalone environment is under

evaluation. To do this, in addition to the analog part model

conversion into a Code (ex. C/C++), able to be compiled and

made executable in a standalone file, VHDL/Verilog code

conversion is required as well, in the same language. At present

the L99LD01 digital code has been manually converted into an

embedded Matlab function, from this to C code and then

integrated with the C code related to the analog parts. The

conversion of VHDL/Verilog code is the real bottle neck of the

entire process. An automatic tool could represent a huge

improvement in the direction of developing A/D mixed mode

simulators in standalone format.

6. REFERENCES

[1] Matlab, Simulink and Simulink Coder manuals

[2] Modelsim SE Foreign Language Interface manual - Version

6.4

[3] 1364-2005 IEEE Standard for Verilog Hardware Description

Language

[4] The Verilog PLI Handbook, Stuart Sutherland, Sutherland

HDL, Inc. (partially available on Google book)

[5] Modelsim VHPI/pli/vpi examples

[6] Mixed-signal modeling using Simulink based-C, Shoufeng

Mu - Michael Laisne, Qualcomm Inc

[7] Java – Netbeans user guide

	Interactive Analog/Digital mixed signal modeling via Foreign VHDL/Verilog C interface
	Abstract
	1. Introduction
	2. Foreign vhdl/verilog C interfaces
	2.1 From Simulink to C code conversion
	2.2 Modelsim foreign language interface
	2.3 Verilog Programming Language Interface
	3. Test case
	4. Real time interactive web GUI
	5. Conclusions
	6. References

